

Geplantes Neubaugebiet "Am Königsweg II" in 27607 Geestland-Holßel

Geotechnische Erkundungen

Ergebnisbericht

Dipl.-Geologe BDG **Jochen Holst** Hinter der Loge 18 27711 Osterholz-Scharmbeck

Fon (04791) 89 85 26 Mobil (0160) 99 03 2001 Fax (04791) 89 85 27 E-Mail holst@geotechnik-holst.de

Impressum

Auftraggeber: BIC - Bauen im Cuxland GmbH & Co KG

Hindenburgstraße 6-10

27616 Beverstedt

Planer: Sweco GmbH

Im Gewerbepark 15 27619 Schiffdorf

Auftragn./Projektleitung: Geologie und Umwelttechnik

Dipl.-Geologe Jochen Holst

Hinter der Loge 18

27711 Osterholz-Scharmbeck

Geländearbeiten: Geo-Service Arnulf Brandes

Lerchenweg 17 21360 Vögelsen

Bearbeitungszeitraum: Oktober 2020-Februar 2021

Datum: 16.02.2021
Projektnummer: 2924

Inhaltsverzeichnis

1 Vorgang und Ziel1
2 Untersuchungsumfang1
3 Ergebnisse der geotechnischen Untersuchungen2
3.1 Bohrungen und Bodenabfolge, Grundwasser2
3.2 Versickerungsversuche3
3.3 Bodenklassifizierung3
3.4 Bodenmechanische Kennwerte4
3.5 Frostempfindlichkeit4
4 Materialbeurteilung hinsichtlich ihrer Verwertbarkeit5
4.1 Oberboden (A)5
4.2 Humose Sande (B)5
4.3 Fein- und Mittelsand (C)6
5 Versickerungsmöglichkeiten6
6 Baugrundbeurteilung6
6.1 Baugrundtragfähigkeit und Gründungsmöglichkeiten6
6.2 Baugrundrisiko7
7 Empfehlungen für Gründungen7
8 Schlussbemerkungen8
Tabelle nverzeichnis Tabelle 1: Ergebnisse Versickerungsversuche (open-end-tests)
Verzeichnis der Anlagen
 [1] Übersichtslageplan [2] Lageplan Baugebiet und Bohrpunkte [3] Profilschnitte der Bohrungen und Rammsondierungen [4] Versickerungsversuche [5] Bodenanalysen MP 1 humoser Oberboden (2016256, Labor Luers, Bremen) MP 2 Abtragsböden (Sand, 2016257, Labor Luers, Bremen)

1 Vorgang und Ziel

Die BIC – Bauen im Cuxland GmbH & Co KG in 27616 Beverstedt beabsichtigt die Erschließung des Neubaugebietes "Am Königsweg II" in 27607 Geestland-Holßel mit 21 Baugrundstücken, die Erschließung soll von der vorhandenen Straße "Am Königsweg" aus erfolgen. Das Gebiet schließt an die vorhandene Bebauung an. Die Flächen wurden bislang landwirtschaftlich als Ackerflächen genutzt.

Für die weitere Planung des Baugebietes sind die Bodenabfolge, Tragfähigkeiten, der Grundwasserstand sowie die Versickerungsmöglichkeiten zu prüfen.

Die Planung des Baugebietes erfolgt durch die Sweco GmbH in Schiffdorf. Mit Mail vom 06.11.2020 erteilte mir die BIC auf Grundlage meines Angebotes vom 06.11.2020 den Auftrag, mittels Bohrungen, Rammsondierungen und ggf. Laboruntersuchungen die geotechnischen Grunddaten zu ermitteln. Für die Ausführung lag ein Lageplan des Baugebietes mit Vorschlag für Bohrpunkte vor.

2 Untersuchungsumfang

Auf dem Areal wurden flächendeckend fünf Kleinrammbohrungen (KRB 1 bis KRB 5) bis 5 m Tiefe angeordnet (siehe Anlagen [1] und [2]). An zwei Bohrpunkten wurden zudem Rammsondierungen (DPM) ausgeführt, außerdem erfolgte an zwei Bohrungen die Ausführung von direkten Versickerungsversuchen (open-end-tests, Ergebnisse Anlage [4]).

Die Geländearbeiten wurden am 15.12.2020 ausgeführt. Die Bohrungen wurden bis 5 m Tiefe ausgeführt, dabei wurden charakteristische Bodenproben entnommen (Bohrprofile und Rammdiagramme in Anlage [3], Lage der Bohrungen in Anlage [2]).

Aufgrund der eindeutigen Bodenansprache und der relativ homogenen Bodenabfolge konnte auf bodenmechanische Untersuchungen verzichtet werden.

Potentielle Abtragsmaterialien (humose Böden und leicht humose feine Sande) wurden hinsichtlich ihrer weiteren Verwertung gemäß LAGA M20 untersucht (Anlage [5]).

Da die in allen Bohrungen in Tiefen ab ca. 1 m auftretenden Sande bautechnisch verwertbar sind, wurde auf eine gesonderte Untersuchung verzichtet.

Die Höhen der Ansatzpunkte (siehe Bohrprofile, Anlage [3]) wurden auf einen im Wendehammer der Straße "Am Königsweg" vorhandenen Kanaldeckel bezogen, die Höhe des Kanaldeckels wurde mangels NHN-Höhe zunächst mit 100,00 im lokalen Höhensystem angenommen.

Die Koordinaten wurden mittels GPS-Gerätes im Gelände aufgesucht. Die Koordinaten sind im UTM-Format an den Bohrprofilen notiert.

3 Ergebnisse der geotechnischen Untersuchungen

3.1 Bohrungen und Bodenabfolge, Grundwasser

Die Bodenabfolge bestätigte bei den Bohrungen den aus der geologischen Karte zu vermutenden Sanden (siehe auch Anlage [3]).

Insgesamt lässt sich folgende generelle Bodenabfolge auf der Baugebietsfläche feststellen:

Der oberflächennahe **sandig-hum ose Oberboden** ist aufgrund der landwirtschaftlichen Nutzung relativ homogen 40-50 cm mächtig.

Darunter folgen in allen Bohrungen zunächst etwas **humose feine Sande** von 20-30 cm Mächtigkeit. Hier scheint durch tiefere Pflügung Humus in tiefere Schichten eingetragen worden zu sein.

Unterlagert werden diese durch eng gestufte knapp dicht gelagerte **Fein- und Mittelsande**, welche die restliche Bodenabfolge bis 5 m Tiefe ausmachen.

Für das Baugebiet gilt somit folgende allgemeine Abfolge (Buchstaben entsprechen den Homogenbereichen, siehe auch Bohrprofile):

- A) humoser Oberboden (Bodengruppe OH) 40-50 cm mächtig, locker gelagert
- B) **feine humose Sande** (Feinsand, schluffig, mittelsandig, humose Streifen und Wurzelwerk, Bodengruppe SE-SU), locker, Mächtigkeit 20-30 cm
- C) **Fein- und Mittelsand** (Bodengruppe SE) mit dünnen Schluffbändern von wenigen Zentimetern, Rostflecken, erkundete Mächtigkeit > 3 m, gut mitteldicht bis knapp dicht gelagert

Die Zusammensetzung der Sande variiert etwas, sie sind jedoch immer der Bodengruppe SE zuzuordnen.

In allen Bohrungen besteht das gesamte Bodenprofil unterhalb des humosen Oberbodens aus tragfähigen Sanden.

Weichschichten wie Torfe und Tone traten in keiner der Bohrungen auf.

Die Rammsondierungen (DPM) bei KRB 1 und 5 dokumentieren für den Sand (C) eine gut mitteldichte Lagerung, die humosen Sande (B) darüber zeigen etwas geringere Schlagzahlen. Dies korrespondiert auch mit dem Bohrfortschritt sowie dem Ziehen des Bohrgestänges.

Freies Grundwasser wurde keiner der Bohrungen festgestellt. Dennoch wird aus Vorsorgegründen ein Bemessungswasserstand von 4 m unter jeweiliger GOK angesetzt.

Alle Aussagen zu Bodenmaterialien beziehen sich streng genommen ausschließlich auf die Aufschlusspunkte. Für den Bereich zwischen den Bohrungen können streng genommen nur Wahrscheinlichkeitsaussagen getroffen werden.

3.2 Versickerungsversuche

An zwei Bohrpunkten (KRB 1 und 5) erfolgten in Tiefen von ca. 1,0 m Versickerungsversuche (open-end-test, Anlage [4]).

Dabei ergaben sich folgende Werte:

Bohrpunkt	Messtiefe [m]	Bodenart	Kf-Wert [m/s]
KRB 1	1	Mittelsand, feinsandig, Schluffbänder	1,3 * 10 ⁻⁶ m/s
KRB5	1	Mittelsand, feinsandig, Schluffbänder	8,4 * 10 ⁻⁶ m/s

Tabelle 1: Ergebnisse Versickerungsversuche (open-end-tests)

Für Dimensionierungen von Versickerungsanlagen (DWA A 138) in den Mittelsand (C) kann der Wert von KRB 1:

$$k_f = 1.3 * 10^{-6} \text{ m/s}$$

angesetzt werden.

3.3 Bodenklassifizierung

Auf Basis der Geländeansprache können die angetroffenen Bodenarten vereinfacht nach Tabelle 2 klassifiziert werden:

Bodenart	Beschreibung (DIN EN ISO 22475-1, 4022/4023)	Bodengruppe (DIN 18196)	Homogen- bereich	Bodenklasse (DIN 18300)
Humoser Ober- boden	Sand, schluffig mit Hu- musanteilen	ОН	А	1 (Oberboden)
Streifig-humo- ser Sand	Feinsand, schluffig, humose Streifen	SE-SU	В	3 (leicht lösbare Bodenarten)
Sand	Fein- und Mittelsand	SE	С	3 (leicht lösbare Bodenarten)

Tabelle 2: Bodenklassifikation DIN EN ISO 22475-1, 4022/23, 18196 und 18300

3.4 Bodenmechanische Kennwerte

Für erdstatische Berechnungen können die in der folgenden Tabelle wiedergegebenen Bodenkennwerte angesetzt werden.

Diese Kennwerte gelten für das auf Basis der Bohrergebnisse entwickelte Schichtenmodell und sind lediglich für ungestörte Bodenschichten gültig.

Auflockerungen, Aufweichungen und Vernässungen im Zuge der Bauarbeiten (bzw. nach lang anhaltenden Niederschlagsperioden oder lokalen Grundwasseranstiegen) können eine Verschlechterung der Rechenwerte nach sich ziehen.

Bodenart	Bodengruppe	Zustandsform	Wichte (in	kN/m³)	Rei-	Kohäsion	Steife-
	(DIN 18196)		über Wasser (y)	unter Wasser (Y')	bungs- winkel φ' in °	(c' in kN/m²)	modul (MN/m²)
Humoser Ober- boden (A)	ОН	locker	15	5	20		0,5
Streifig-humoser Sand (B)	SE-SU	locker	18	10	30		15
Sand (C)	SE	Mitteldicht - dicht	18	10	32,5		50

Tabelle 3: Bodenmechanische Kennwerte der Bodenschichten

3.5 Frostempfindlichkeit

Die Frostempfindlichkeit der Bodenmaterialien ist am Standort unterschiedlich zu bewerten. Der frostempfindliche Oberboden ist ohnehin bautechnisch ungeeignet ist und muss unter Bauwerken und in Verkehrstrassen abgetragen werden.

Der in der Bodenabfolge in einer Lage in Tiefen zwischen ca. 0,5 und 0,8 m Tiefe vorkommende humose Sand ist in die Frostempfindlichkeitsklasse F2 ("gering bis mittel frostempfindlich") einzustufen.

Die darunter anstehenden Sande sind der Frostempfindlichkeitsklasse F1 ("nicht frostempfindlich" nach ZTVE) zuzuordnen.

4 Materialbeurteilung hinsichtlich ihrer Verwertbarkeit

4.1 Oberboden (A)

Der humose Oberboden (Bodengruppe nach DIN 18 196: OH) ist als belebte Materie besonders schützenswert und darf nicht überbaut werden. Für dies Material ist ein schonender Abtrag und eine Verwertung im Landschaftsbau zu empfehlen.

Eine Mischprobe des humosen Oberbodens (MP 1) wurde chemisch hinsichtlich einer weiteren Verwertung untersucht. Dies ist sinnvoll, wenn die anfallende Menge vor Ort nicht verwertet werden kann.

Der zugehörige Laborbericht (Labor Luers, Bremen, 2016256 findet sich in Anlage [5].

Bei dieser Analyse zeigten sich keine echten Schadstoffe. Mit Ausnahme des aus dem natürlichen Humusgehalt stammenden, mit 2,1 % stark erhöhten TOC-Wertes lagen alle Analysenparameter unterhalb der Z 0-Werte bzw. der Nachweisgrenzen.

Das Material ist somit formal ausschließlich aufgrund des TOC-Wertes in die Zuordnungsklasse Z 2 einzustufen, ist jedoch gemäß § 12 der BBodschV als humusreicher Boden einer Verwertung zuzuführen, wenn es nicht vor Ort innerhalb des Baufeldes verwertet werden kann.

Für ein konkretes Vorhaben muss ggf. eine Abstimmung mit der zuständigen Unteren Wasser- und Bodenschutzbehörde erfolgen.

4.2 Humose Sande (B)

Die in einer Lage von 20-30 cm unterhalb des humosen Oberbodens vorkommenden streifighumosen Sande (Bodengruppe nach DIN 18 196: SE-SU) sind bautechnisch als Füllmaterial nicht geeignet und können höchstens zur Landschaftsgestaltung oder Geländeanpassung außerhalb von Verkehrs- und Bauwerksflächen verwertet werden. Voraussichtlich werden diese Materialien beim Bau der Verkehrswege aufgrund der Tiefenlage erreicht, zusätzliche Mengen werden beim Bau der Kanäle anfallen.

Eine Bodenanalyse des bei Abtragsarbeiten anfallenden, bautechnisch nicht verwertbaren humosen Sandes (MP 2, Labor Luers, Bremen, Laborbericht 2016257, Anlage [5]) ergab lediglich einen etwas erhöhten TOC-Wert, alle Analysenparameter lagen unterhalb der Z 0-Werte bzw. der Nachweisgrenzen.

Das Material ist somit formal ausschließlich aufgrund des TOC-Wertes in die Zuordnungsklasse Z 1 einzustufen, ist jedoch gemäß § 12 der BBodschV als humusreicher Boden einer Verwertung zuzuführen, wenn es nicht vor Ort innerhalb des Baufeldes verwertet werden kann.

Für ein konkretes Vorhaben muss ggf. eine Abstimmung mit der zuständigen Unteren Wasser- und Bodenschutzbehörde erfolgen.

4.3 Fein- und Mittelsand (C)

Die unterhalb der streifig-humosen Sande (B) auftretenden knapp dicht gelagerten Fein- und Mittelsande (C) werden nach derzeitiger Einschätzung beim Straßen- und Kanalbaumaßnahmen berührt. Ihre Tragfähigkeit für Flächenlasten ist absolut unproblematisch.

5 Versickerungsmöglichkeiten

Die überwiegende Abfolge aus Sanden unterhalb eines nicht allzu mächtigen humosen Sandes macht eine gezielte Versickerung von Niederschlagswasser möglich, auch wenn der ermittelte kf-Wert nicht optimal ist.

Für die Dimensionierung von Versickerungsanlagen gemäß DWA A 138 kann ein kf-Wert von 1,3 * 10⁻⁶ m/s angesetzt werden (siehe auch Punkt 3.2).

Im Bereich von Versickerungsanlagen muss eine Wegsamkeit in die zur Versickerung geeigneten Sande (C) geschaffen werden, hier sind bei Bedarf der streifig-humose Sand (B) und der humose Oberboden (A) komplett gegen gut durchlässige Sande auszutauschen.

6 Baugrundbeurteilung

6.1 Baugrundtragfähigkeit und Gründungsmöglichkeiten

Für eine ausreichende Tragfähigkeit des Untergrundes sind im Allgemeinen mindestens steifplastische Konsistenzen bindiger Böden (Ton, Schluff; $I_C \ge 0,75$) oder eine mitteldichte Lagerung rolliger Böden (Sande) erforderlich.

Festgesteinsschichten sind in der Regel als ausreichend tragfähig einzustufen, sind aber im Untersuchungsgebiet erst in sehr großen Tiefen anzutreffen.

Die sandig-humosen Oberbodenschichten und die streifig-humosen Sande sind für eine Lastabtragung nicht geeignet. Sie dürfen aufgrund ihrer Schutzbedürftigkeit ohnehin nicht überbaut und müssen daher im Bereich von Bauwerken abgetragen werden. Eine Verwertung in der Landschaftsgestaltung vor Ort wird empfohlen.

Für die Erschliessungstrassen und -bauwerke ist eine herkömmliche Lastabtragung über die darunter folgenden Sande zu empfehlen.

Wenn im Bereich von Kanalbauten – wider Erwarten – Geschiebelehme angetroffen werden, so sollte bei geringen Mächtigkeiten oder weicher Konsistenz der Lehm gegen Sand ausgetauscht werden.

6.2 Baugrundrisiko

Als Baugrundrisiko wird die Abweichung der tatsächlichen von den erwarteten Baugrundverhältnissen am Standort verstanden.

Die Zuverlässigkeit der Aussage wächst mit der Anzahl der Untersuchungspunkte und Laborversuche, kann aber in keinem Fall das Baugrundrisiko vollständig ausschließen.

Stark wechselnde Verhältnisse wie im Bereich von Fließgewässern erhöhen, trotz vorhergehender Untersuchungen nach den anerkannten Regeln der Technik, zudem das Risiko.

Auch weitere Erschwemisse können das Risiko erhöhen, wie z.B. das Vorhandensein von Kampfmitteln, Fundamentresten, archäologischen Funden, Kanälen, Gräbern, Altablagerungen und viele Sachverhalte mehr.

Nach den bisher vorliegenden Erkenntnissen ist das Baugrundrisiko am Untersuchungsstandort aufgrund der geologischen Gegebenheiten für die geplanten Erschließungsmaßnahmen als etwas unterdurchschnittlich einzustufen.

Diese Einschätzung begründet sich auf die einerseits guten bodenmechanischen Eigenschaften des Sandes und auf die festgestellten hohen Grundwasser-Flurabstände.

Sollten sich bei der Bauausführung andere als die vorhergesagten Verhältnisse zeigen, so ist ggf. der Unterzeichner kostenpflichtig zur Bewertung und ggf. Ergänzung der Baugrundbeurteilung heranzuziehen.

7 Empfehlungen für Gründungen

Die Oberflächen im Baufeld sind bei ungünstiger Witterung möglicherweise schwer befahrbar, daher wird eine Ausführung von Erschließungsarbeiten unter trockener Witterung empfohlen.

Es wird empfohlen, die Gründung der Erschließungsstraßen sowie der Kanäle auf den Sanden (C) vorzusehen.

Auch für die geplante Wohnbebauung empfiehlt sich eine Lastabtragung über die Sande.

Bei Bauwerken mit Kellergeschoss sollte unbedingt eine bauwerksbezogene Erkundung erfolgen, da hier ggf. die Grundwasser-Spiegelhöhe erreicht werden könnte, für alle anderen Bauten wird dies empfohlen.

Für Gründungen auf den Sanden (C) ist ein Bemessungswert des Sohlwiderstandes von 280 kN/m² anzusetzen, wenn mit Einbindetiefen und Fundamentbreiten gemäß EC 7 gearbeitet wird. Für ausreichend verdichtet eingebauten Füllsand gilt dasselbe.

Bei höheren Einbindetiefen steigen die Werte entsprechend EC 7 (Tabelle A 6.1 der EC 7) an.

Sollten wider Erwarten bei der Ausführung ungeeignete Schichten wie Torfe oder organische Schluffe angetroffen werden, so ist der Unterzeichner für eine Neubewertung hinzuzuziehen.

Der humose Oberboden (A) darf nicht überbaut werden und ist im Bereich der Verkehrstrassen komplett abzutragen. Gleiches gilt für die streifig-humosen Sande (B).

Für die Herstellung der Straßentrassen sind derzeit keine außergewöhnlichen Schwierigkeiten absehbar, im Regelfall sollten diese Arbeiten bei maximalen Eingriffen bis ca. 80 cm innerhalb der Sande (C) und weit oberhalb des Grundwassers liegen.

Dennoch sollte bei evtl. notwendigen Verdichtungsarbeiten grundsätzlich auf auffällige Vernässungen geachtet werden.

Bei tieferen Eingriffen in den Boden (Kanalbau und Versorgungstrassen, angenommene Tiefe bis ca. 3 m) ist nach derzeitigem Kenntnisstand keine Freilegung von Grundwasser-Vorkommen zu befürchten.

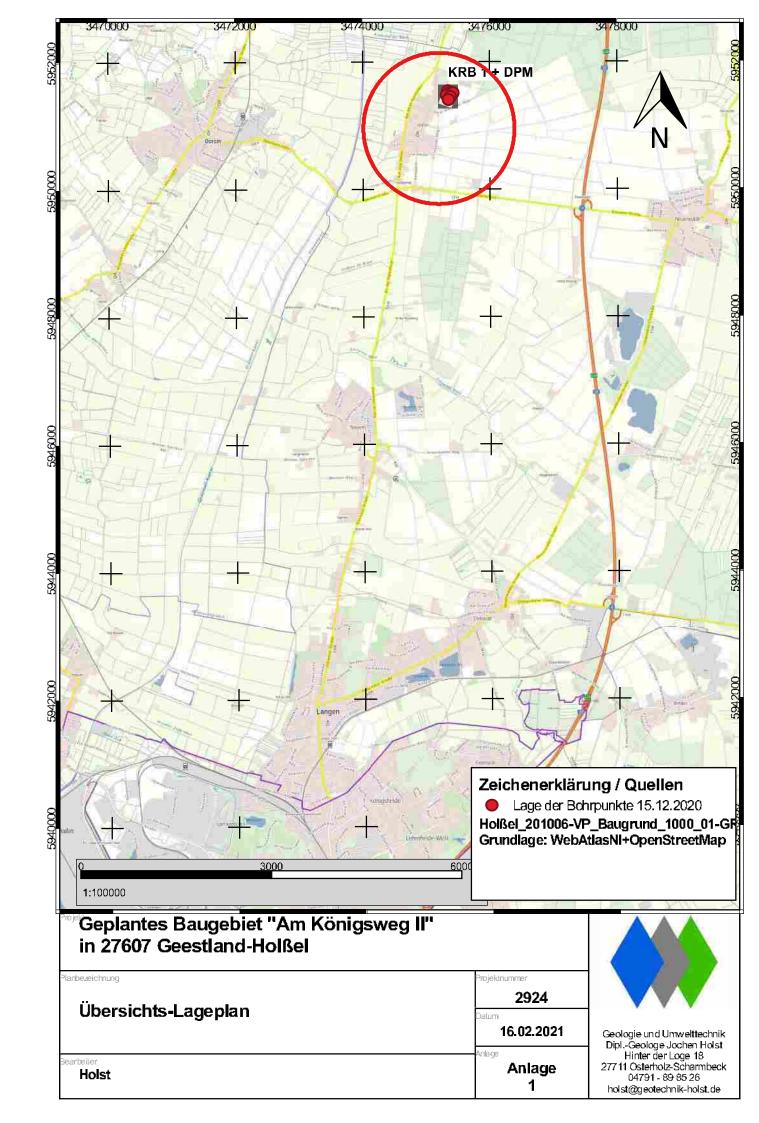
Eine Grundwasserhaltung ist daher voraussichtlich nicht notwendig.

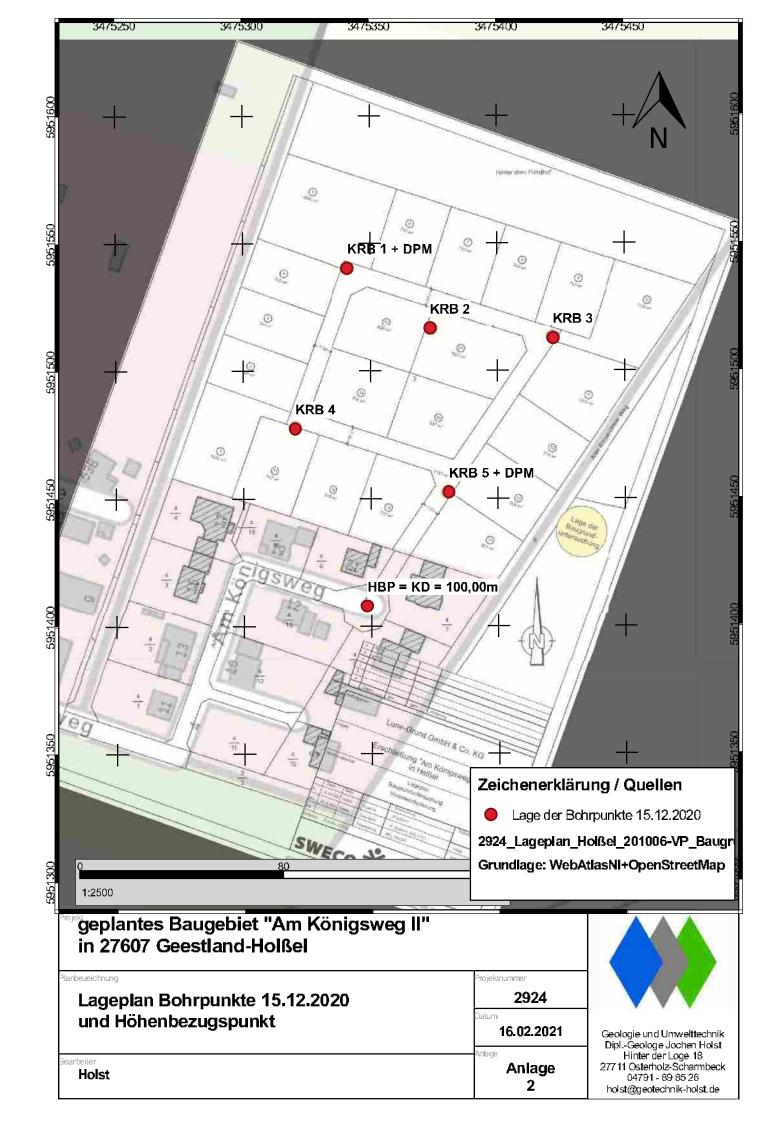
Fehlendes Volumen nach Abtrag des humosen Oberbodens (und lokal des Geschiebelehms) ist grundsätzlich durch verdichtet eingebauten Sand (F1-Qualität mit Feinkornanteil um 5 %) zu ersetzen. Bei dynamischer Verdichtung ist zudem auf Wasseraustritte zu achten, treten diese auf, so ist ggf. sofort auf rein statische Verdichtung umzustellen.

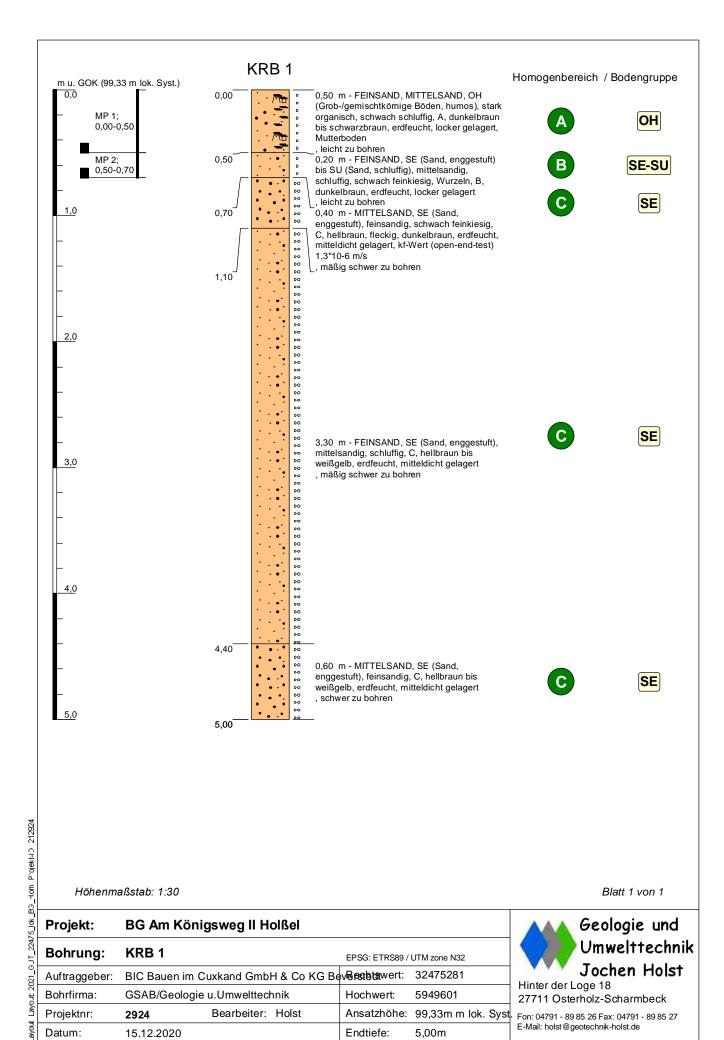
8 Schlussbemerkungen

Die gemachten Empfehlungen beschränken sich auf den derzeit bekannten Planungsstand.

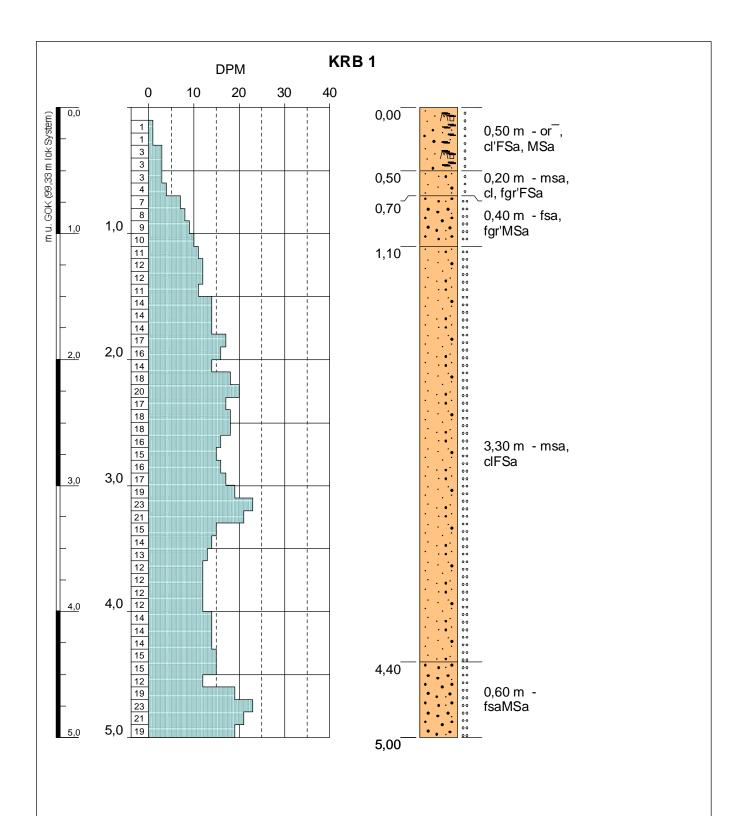
Alle Annahmen in diesem Bericht beruhen auf den Ergebnissen der vorgenommenen Baugrunduntersuchung und sind im engeren Sinne nur für die direkte Umgebung der Bohrungen zum Zeitpunkt der Aufschlussarbeiten gültig. Für dazwischen liegende Bereiche sind lediglich Wahrscheinlichkeitsaussagen möglich. Abweichungen von den tatsächlichen Baugrundverhältnissen fallen daher unter das Baugrundrisiko.


Sollten sich bei der Bauausführung andere als die vorhergesagten Verhältnisse zeigen, so ist ggf. der Unterzeichner kostenpflichtig zur Bewertung und ggf. Ergänzung der Baugrundbeurteilung heranzuziehen.


Dieser Bericht ist nur in seiner Gesamtheit mit allen Anlagen gültig.


Osterholz-Scharmbeck, den 16.02.2021

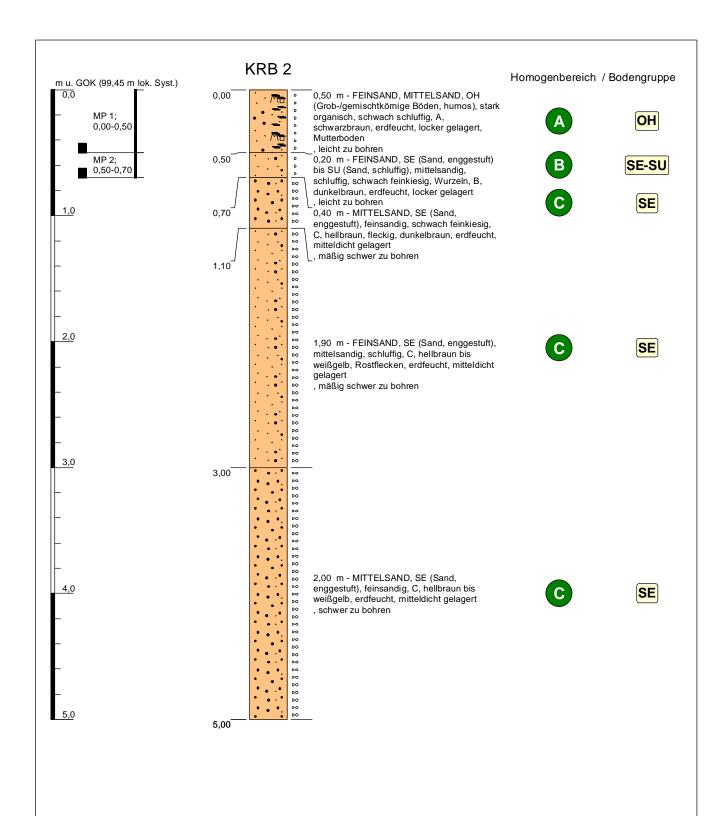
Geologie und Umwelttechnik Jochen Holst



Projekt:	BG Am Köni	gsweg II Hol	ßel		
Bohrung:	KRB 1			EPSG: ETRS89 /	UTM zone N32
Auftraggeber:	BIC Bauen im C	uxkand GmbH	& Co KG Be	v ert:	32475281
Bohrfirma:	GSAB/Geologie	u.Umwelttechn	nik	Hochwert:	5949601
Projektnr:	2924	Bearbeiter: H	Holst	Ansatzhöhe:	99,33m m lok. Syst
Datum:	15.12.2020			Endtiefe:	5,00m

Hinter der Loge 18 27711 Osterholz-Scharmbeck

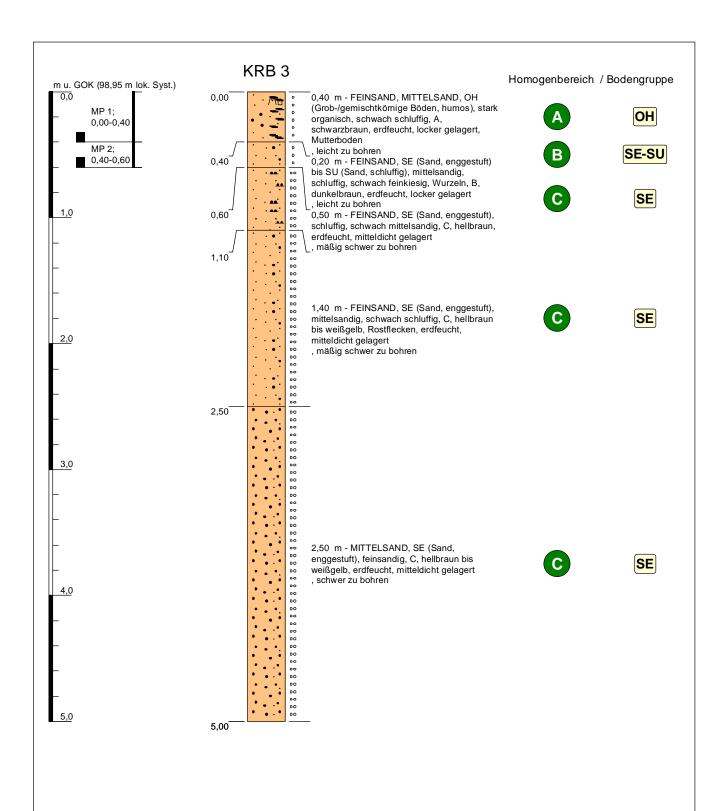
Fon: 04791 - 89 85 26 Fax: 04791 - 89 85 27 E-Mail: holst@geotechnik-holst.de



Projekt: 2924 BG Am Königsweg II Holßel 99,33 m lok.Syst Ansatzhöhe: KRB 1 **Bohrung:** Endtiefe: 5,00 m BIC Bauen im Cuxkand GmbH & Co KG Bevilletstwert: Auftraggeber: 32475281 GSAB/Geologie u.Umwelttechnik Bohrfirma: Hochwert: 5949601 Bearbeiter: EPSG: ETRS89 / UTM zone N32 Holst Bohrdatum: 15.12.2020 Projektnummer: 2924

ProjektuD 212924

Hinter der Loge 18
27711 Osterholz-Scharmbeck
Fon: 04791-89 85 26 Fax: 04791-89 85 27
E-Mail: holst@geotechnik-holst.de

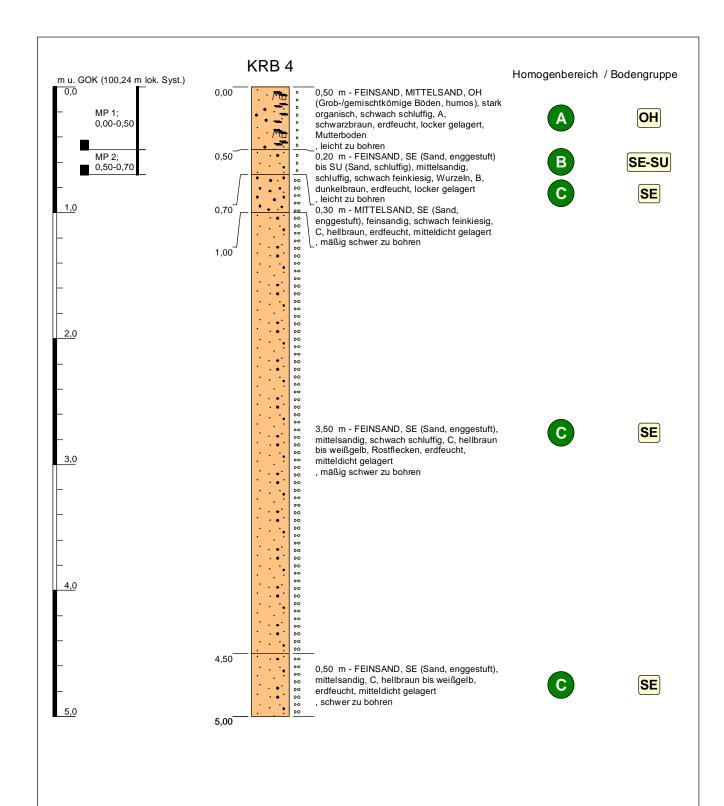

Projekt:	BG Am Köni	gsweg II H	olßel		
Bohrung:	KRB 2			EPSG: ETRS89 /	UTM zone N32
Auftraggeber:	BIC Bauen im C	uxkand Gmb	H & Co KG Be	v erstets wert:	32475313
Bohrfirma:	GSAB/Geologie	u.Umwelttech	hnik	Hochwert:	5949577
Projektnr:	2924	Bearbeiter:	Holst	Ansatzhöhe:	99,45m m lok. Syst.
Datum:	15.12.2020			Endtiefe:	5,00m

Geologie und Umwelttechnik Jochen Holst

Jochen Hols
Hinter der Loge 18
27711 Osterholz-Scharmbeck

Fon: 04791 - 89 85 26 Fax: 04791 - 89 85 27 E-Mail: holst@geotechnik-holst.de

Projekt: BG Am Königsweg II Holßel **Bohrung:** KRB 3 EPSG: ETRS89 / UTM zone N32 Auftraggeber: BIC Bauen im Cuxkand GmbH & Co KG Bev Restetswert: 32475361 Bohrfirma: 5949573 GSAB/Geologie u.Umwelttechnik Hochwert: Projektnr: Bearbeiter: Holst Ansatzhöhe: 98,95m m lok. Syst 2924 Datum: Endtiefe: 5,00m 15.12.2020

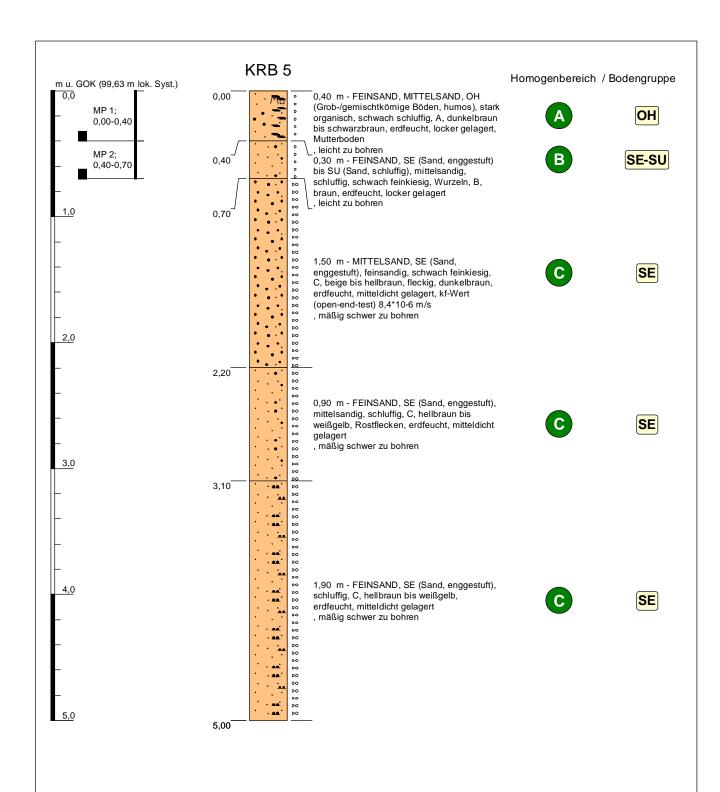


Geologie und Umwelttechnik Jochen Holst

Hinter der Loge 18 27711 Osterholz-Scharmbeck

Fon: 04791 - 89 85 26 Fax: 04791 - 89 85 27 E-Mail: holst@geotechnik-holst.de

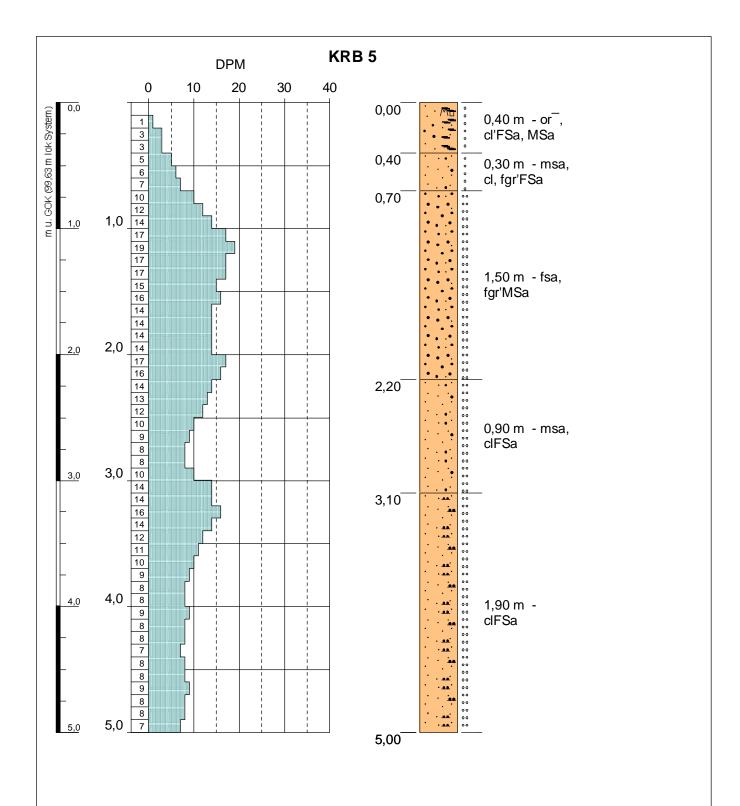
2021_GJT_22475_Jok_B3_Hom ProjektHJ 212924


Projekt: BG Am Königsweg II Holßel **Bohrung:** KRB 4 EPSG: ETRS89 / UTM zone N32 Auftraggeber: BIC Bauen im Cuxkand GmbH & Co KG Bev Restetswert: 32475260 Bohrfirma: 5949538 GSAB/Geologie u.Umwelttechnik Hochwert: 100,24m m lok. Syst_{Fon: 04791} - 898526 Fax: 04791 - 898527Projektnr: Bearbeiter: Holst Ansatzhöhe: 2924 Datum: Endtiefe: 5,00m 15.12.2020

2021_GJT_22475_Jok_B3_Hom ProjektHJ 212924

Hinter der Loge 18 27711 Osterholz-Scharmbeck

E-Mail: holst@geotechnik-holst.de


Projekt:	BG Am Köni	gsweg II Ho	lßel		
Bohrung:	KRB 5			EPSG: ETRS89 /	UTM zone N32
Auftraggeber:	BIC Bauen im C	uxkand GmbH	I & Co KG Be	v ert:	32475320
Bohrfirma:	GSAB/Geologie	u.Umwelttechi	nik	Hochwert:	5949513
Projektnr:	2924	Bearbeiter:	Holst	Ansatzhöhe:	99,63m m lok. Syst
Datum:	15.12.2020			Endtiefe:	5,00m

ayout Layout 2021_GJT_22475_Jok_B3_4om ProjektJ> 212924

Hinter der Loge 18 27711 Osterholz-Scharmbeck

Fon: 04791 - 89 85 26 Fax: 04791 - 89 85 27 E-Mail: holst@geotechnik-holst.de

Projekt: 2924 BG Am Königsweg II Holßel 99,63 m lok.Syst Ansatzhöhe: **Bohrung:** KRB 5 Endtiefe: 5,00 m BIC Bauen im Cuxkand GmbH & Co KG Bevilletstwert: Auftraggeber: 32475320 GSAB/Geologie u.Umwelttechnik Bohrfirma: Hochwert: 5949513 Bearbeiter: EPSG: ETRS89 / UTM zone N32 Holst Bohrdatum: 15.12.2020 Projektnummer: 2924

Hinter der Loge 18 27711 Osterholz-Scharmbeck Fon: 04791-89 85 26 Fax: 04791-89 85 27 E-Mail: holst@geotechnik-holst.de

ProjektuD 212924

		0	pen-End-Te	et			
			Pen-Fun-16	J.	Tabelle:	1.1	
Allgemeine A	ngaben:				Datum:	15.12.2020	
Standort:	3	Am Königswe	g II, Geestland	l-Hoißel			
Bodenart:		Mittelsand, fei					
Flächennutzu		Ackerboden					
Sonstige Beol							
Versuchs-Nr.:		V1 b. KRB 5	Messtiefe:	1,00	Beginn:	11:01	
0 ''4 - 1 4 -	4				Ende:	11:39	
Gerätekonsta Radius des M		r=l	0,016	l _m			
Länge des Me		Hr=	1,000				
Grundfläche d		A=	0,0008042				
Granaliache e	ics itomics.	,,-	0,0000042	l'''			
		Messprote	okoll und Au	ıswertung			
		•		-			
Uhrzeit	Messdauer	Wassersta	nd u. POK	mittlere	∨ersickerte	k _f =	
		Beginn	Ende	Druckhöhe	Wassermeng	Q/(5,5*r*H)	
11:01	[min]	[m]	[m]	[m]	m³/s	[m/s]	
11:09	8	0,000	0,330	0,84	5,53E-07	7,52E-06	
11:18	9	0,330	0,580			7,76E-06	
11:26	8	0,580	0,730			8,28E-06	
11:34	8	0,730	0,840			9,74E-06	
11:39	5	0,840	0,880	0,14	1,07E-07	8,70E-06	
1636			0.10=.00		1		
mittlerer kf-W	Vert (alle Zeits	itufen):	8,40E-06	[m/s]			
		В	emerkunge	n:			
			<u> </u>				

Open-End-Test							
			Pour mind-16	~.	Tabelle:	1.2	
Allgemeine A	ngaben:			Datum:	15.12.2020		
Standort:		Am Königswe					
Bodenart:		Mittelsand, fei	nsandig, Lehm	nlagen			
Flächennutzur		Ackerboden					
Sonstige Beob Versuchs-Nr.:		V2 b. KRB 1	Mecetiefe:	1.00	Beginn:	12:00	
V EI SUCI IS-INI		VZD. KKD I	Messuele.	1,00	Ende:	13:40	
Gerätekonsta	anten:					10.10	
Radius des M	essrohres:	r=	0,016	m			
Länge des Me		Hr=	1,000				
Grundfläche d	les Rohres:	A=	0,0008042	m²			
		Messprote	okoll und Au	ıswertung			
Uhrzeit	Messdauer	Wassersta	nd u. POK	mittlere	∨ersickerte	k _f =	
		Beginn	Ende	Druckhöhe	Wassermeng	Q/(5,5*r*H)	
12:00	[min]	[m]	[m]	[m]	m³/s	[m/s]	
12:20	20	0,000	0,210		1,41E-07	1,79E-06	
12:40	20	0,210	0,330			1,25E-06	
13:00 13:40	20 40	0,330 0,420	0,420 0,550	0,63 0,52	6,03E-08 4,36E-08	1,10E-06 9,61E-07	
10.40	40	0,420	0,000	0,02	4,002 00	0,012 07	
mittlerer kf-W	ert (alle Zeits	tufen):	1,27E-06	[m/s]	,		
					•		
			om orkunga.	21			
			emerkunge	n:			

T +49(0) 421 -388928-00 F +49(0) 421 -388928-49

rms-ew

labor@luers.de www.luers.de

Chemisch-Technisches
Laboratorium Luers GmbH & Co. KG
Gottlieb-Daimler-Str.1, 28237 Bremen
Geschäftsführer: Ralph-Matthias Schoth
Amtsgericht Bremen HRA 21432 HB
Persönlich haftende Gesellschafterin:
Schoth Verwaltungsgesellschaft mbH
Amtsgericht Bremen HRB 32201

11.01.2021

Datum:

Labor Luers Gottlieb-Daimler-Str. 1 28237 Bremen

Geologie und Umwelttechnik Jochen Holst Hinter der Loge 18

27711 Osterholz-Scharmbeck

Analysenbericht

Probeneingang

21.12.2020

Probenehmer : Kunde

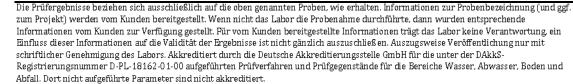
Prüfzeitraum : 21.12.2020 - 05.01.2021

Labor-Nr. : 2016256
Probenart : Boden
Anmerkungen zur Probe : keine

Projekt : Baugeb. Am Königsweg II, Holßel, Projekt Nr.: 2924

Probenahmeort : Probenahmestelle : -

Probenbezeichnung : MP 1 Humoser Oberboden 15.12.20


Dr. R.-M. Schoth

Geschäftsführer

Dr. T. Schubert

Leitung Prüfberichtswesen

Seite 1 von 3

Analysenbericht Seite 2 von 3

Datum: 11.1.2021 Labor-Nr. : 2016256 Probenbezeichnung : MP 1 Humoser Oberboden 15.12.20

Projekt : Baugeb. Am Königsweg II, Holßel, Projekt Nr.: 2924

Geologie und Umwelttechnik Jochen Holst

%(m/m) mg/kg TS 6(m/m) TS mg/kg TS	82,1 0,10 2,10 < 0,5 < 50 < 50 < 0,05 < 0,005 < 0,	DIN ISO 11465:1996-12 DIN EN ISO 17380:2013-10 DIN EN 13137:2001-12 DIN 38414-S 17:1989-11 DIN EN 14039:2005-01 HLUG Hdb. Altlasten Bd. 7:2000 HLUG Hdb. Altlasten Bd. 7:2000
mg/kg TS	2,10 < 0,5 < 50 < 50 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005	DIN EN 13137:2001-12 DIN 38414-S 17:1989-11 DIN EN 14039:2005-01 HLUG Hdb. Altlasten Bd. 7:2000
mg/kg TS	< 0,5 < 50 < 50 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005	DIN 38414-S 17:1989-11 DIN EN 14039:2005-01 HLUG Hdb. Altlasten Bd. 7:2000
mg/kg TS	< 50 < 50 < 0,05 < 0,05	DIN EN 14039:2005-01 HLUG Hdb. Altlasten Bd. 7:2000
mg/kg TS	< 50 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005	HLUG Hdb. Altlasten Bd. 7:2000
mg/kg TS	< 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005	
mg/kg TS	< 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 n.n. equation of the control o	
mg/kg TS	< 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05 n.n. equation of the control o	
mg/kg TS	< 0,05 < 0,05 < 0,05 < 0,05 < 0,05 < 0,05	
mg/kg TS	< 0,05 < 0,05 < 0,05 < 0,05 < 0,05	
mg/kg TS	< 0,05 < 0,05 < 0,05 n.n. n.n. < 0,005 < 0,005 < 0,005 < 0,005 < 0,005	
mg/kg TS	< 0,05 < 0,05 n.n. n.n. < 0,005 < 0,005 < 0,005 < 0,005 < 0,005	
mg/kg TS	< 0,05 n.n. n.n. < 0,005 < 0,005 < 0,005 < 0,005 < 0,005	
mg/kg TS	n.n. 0,005 < 0,005 < 0,005 < 0,005 < 0,005 < 0,005	
mg/kg TS	n.n. < 0,005 < 0,005 < 0,005 < 0,005 < 0,005	
mg/kg TS mg/kg TS mg/kg TS mg/kg TS mg/kg TS mg/kg TS	< 0,005 < 0,005 < 0,005 < 0,005 < 0,005	HLUG Hdb. Altlasten Bd. 7:2000
mg/kg TS mg/kg TS mg/kg TS mg/kg TS mg/kg TS mg/kg TS	< 0,005 < 0,005 < 0,005 < 0,005	
mg/kg TS mg/kg TS mg/kg TS mg/kg TS	< 0,005 < 0,005 < 0,005	
mg/kg TS mg/kg TS mg/kg TS	< 0,005 < 0,005	
mg/kg TS mg/kg TS	< 0,005	
mg/kg TS		
	< 0.005	
mg/kg TS	n.n.	DIN EN 15308:2008-05
mg/kg TS	< 0,05	
	< 0,05	
mg/kg TS	< 0,05	
mg/kg TS		
	,	
	,	
0, 0		
	,	
		DIN ISO 18287:2006-05
C. C		DIN ISO 11466:1997-06
mg/kg TS	2.7	DIN EN ISO 11969:1996-11
		DIN EN ISO 11885:2009-09
	0,14	DIN EN ISO 11885:2009-09
	26	DIN EN ISO 11885:2009-09
	6,5	DIN EN ISO 11885:2009-09
mg/kg TS	11	DIN EN ISO 11885:2009-09
mg/kg TS	< 0,05	DIN EN 1483:2007-07
mg/kg TS	< 0,4	DIN EN ISO 17294-2:2014-12
mg/kg TS	18	DIN EN ISO 11885:2009-09
	mg/kg TS	mg/kg TS n.n. mg/kg TS < 0,05

Analysenbericht Seite 3 von 3

Datum: 11.1.2021 Labor-Nr. : 2016256

Probenbezeichnung : MP 1 Humoser Oberboden 15.12.20

Projekt : Baugeb. Am Königsweg II, Holßel, Projekt Nr.: 2924

Geologie und Umwelttechnik Jochen Holst

Untersuchung Eluat			DIN EN 12457-4:2003-01
pH-Wert bei 20°C Leitfähigkeit bei 25°C	- μS/cm	6,2 22	DIN EN ISO 10523:2012-04 DIN EN 27888:1993-11
Chlorid Sulfat	mg/l mg/l	< 1 < 1	DIN EN ISO 10304-1:2009-07 DIN EN ISO 10304-1:2009-07
Cyanide, gesamt*	μg/l	< 5	DIN EN ISO 14403-02:2012-02
Phenolindex	μg/l	< 10	DIN 38409-16: 1984-06
Arsen Blei Cadmium Chrom gesamt Kupfer Nickel Quecksilber Zink	µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1,3 < 10 < 0,5 < 5 < 5 < 5 < 5 < 25	DIN EN ISO 11969:1996-11 DIN EN ISO 11885:2009-09 DIN EN ISO 5961:1995-05 DIN EN ISO 11885:2009-09 DIN EN ISO 11885:2009-09 DIN EN ISO 11885:2009-09 DIN EN I483:2007-07 DIN EN ISO 11885:2009-09

 $^{{}^*}Untervergabe\ an\ akkreditier tes\ Labor$

T +49(0) 421 -388928-00 F +49(0) 421 -388928-49

labor@luers.de www.luers.de

rms-ew

www.luers.d Chemisch-Technisches Laboratorium Luers GmbH & Co. KG Gottlieb-Daimler-Str.1, 28237 Bremen

Amtsgericht Bremen HRA 21432 HB Persönlich haftende Gesellschafterin: Schoth Verwaltungsgesellschaft mbH Amtsgericht Bremen HRB 32201

11.01.2021

Datum:

Geschäftsführer: Ralph-Matthias Schoth

Labor Luers Gottlieb-Daimler-Str. 1 28237 Bremen

Geologie und Umwelttechnik Jochen Holst Hinter der Loge 18

27711 Osterholz-Scharmbeck

Analysenbericht

Probeneingang

: 21.12.2020

Probenehmer : Kunde

Prüfzeitraum : 21.12.2020 - 05.01.2021

Labor-Nr. : 2016257
Probenart : Boden
Anmerkungen zur Probe : keine

Projekt : Baugeb. Am Königsweg II, Holßel, Projekt Nr.: 2924

Probenahmeort : Probenahmestelle : -

Probenbezeichnung : MP 2 Abtragsboden 15.12.20

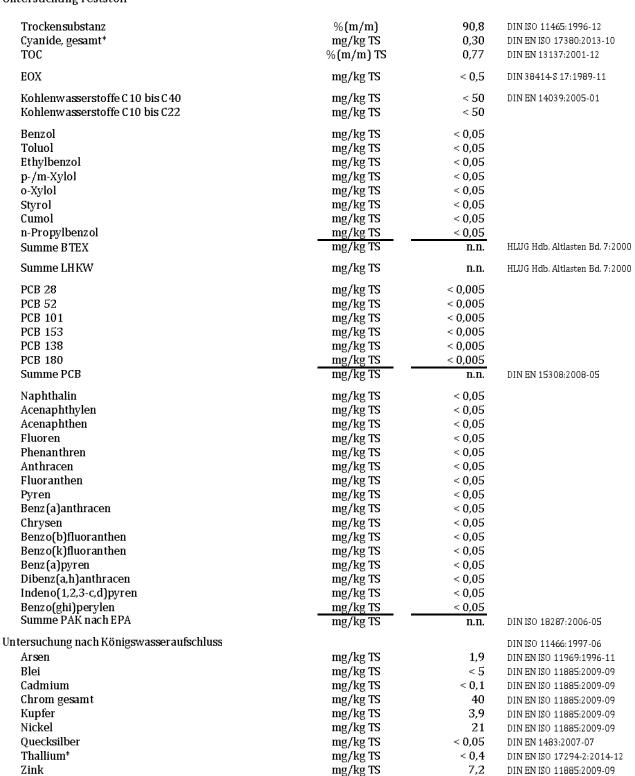
Dr. R.-M. Schoth

Geschäftsführer

Dr. T. Schubert

Leitung Prüfberichtswesen

Seite 1 von 3


Analysenbericht Seite 2 von 3

Datum: 11.1.2021 Labor-Nr.: 2016257 Probenbezeichnung: MP 2 Abtragsboden 15.12.20

Projekt : Baugeb. Am Königsweg II, Holßel, Projekt Nr.: 2924

Geologie und Umwelttechnik Jochen Holst

Untersuchung Feststoff

Analysenbericht Seite 3 von 3

Geologie und Umwelttechnik Jochen Holst

Untersuchung Eluat			DIN EN 12457-4:2003-01
pH-Wert bei 20°C Leitfähigkeit bei 25°C	μS/cm	5,8 12	DIN EN ISO 10523:2012-04 DIN EN 27888:1993-11
Chlorid Sulfat	mg/l mg/l	< 1 < 1	DIN EN ISO 10304-1:2009-07 DIN EN ISO 10304-1:2009-07
Cyanide, gesamt*	μg/l	< 5	DIN EN ISO 14403-02:2012-02
Phenolindex	μg/l	< 10	DIN 38409-16:1984-06
Arsen Blei Cadmium Chrom gesamt Kupfer Nickel Quecksilber Zink	µg/l µg/l µg/l µg/l µg/l µg/l	0,8 < 10 < 0,5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 0,1	DIN EN ISO 11969:1996-11 DIN EN ISO 11885:2009-09 DIN EN ISO 5961:1995-05 DIN EN ISO 11885:2009-09 DIN EN ISO 11885:2009-09 DIN EN ISO 11885:2009-09 DIN EN ISO 11885:2009-09 DIN EN ISO 11885:2009-09

 $^{{}^*}Untervergabe\ an\ akkreditier tes\ Labor$